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Regulated and Deregulated Periods in Nigeria 
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Abstract 
This study investigates the validity of Fisher hypothesis in regulated period (January 1961 to September1986) and the deregulated (October 1986 to 
December 2010) using monthly nominal interest rate and inflation. Tests for unit root and fractional root were conducted on these variables for the two 
periods. Fractional cointegration analysis was used to test the long run relationship between nominal interest rate and inflation. The results indicate 
fractional integration in the deregulated period for the variables. The variables were found to be fractionally cointegrated which implied that they are 
mean reverting and have long run relationship in the deregulated period. In the regulated period on the other hand, the variables were not fractionally 
cointegrated. The cointegration test did not support long run relationship between the variables in the deregulation period. This research work confirms 
the validity of Fisher hypothesis with deregulated period in Nigeria and there is no evidence of Fisher hypothesis in the regulated period. This is because 
in the regulated period interest rate is fixed and inflation is controlled, therefore not allowing the two economic variables to interplay. The study 
recommends that the Nigerian government should adopt policies that reduce inflation and interest rate to the minima points since Fisher hypothesis does 
exist in the current dispensation. 
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1. INTRODUCTION 

Nigeria’s financial system has gone through noticeable 
changes in term of ownership structure. Several policies, 
with a number of institutions established to provide the 
necessary economic environment and regulatory 
framework. Prior to 1986 when the structural adjustment 
programme (SAP) was introduced, the lending rate 
practiced by banks in Nigeria were strictly regulated under 
the surveillance of the supervisory Central Bank of Nigeria. 
The deregulation period which brought about the 
Structural Adjustment Programme (SAP) era came with 
stringent banking rules ([1]). 

Financial institutions are regulated in some countries (that 
is, interest rate control, compulsory public debt placement 
and control on external capital flows) fixing nominal 
interest rate and raising fiscal deficits to lower inflation. 
This was done in Nigeria which resulted in repressed (even 
negative) real interest rates as observed in [2]. As a reversal 
policy however, the government in September 1986 
introduced some measure of deregulation into interest rate 
management due to wide variations and unnecessarily high 
interest rate under the complete regulation policy ([1]). 

The relationship between interest rate and inflation has 

been frequently investigated in both theoretical and 

empirical economics. The one-to-one long-run relationship 
between interest rates and inflation known as the Fisher 
hypothesis, has been tested extensively in the last two 
decades. The study of this relationship initially tested by [3] 
known as Fisher hypothesis or the Fisher effect, examines  

the effect of nominal interest rate and inflation on the 
minimum required returns ([4]). According to [4], the 
Fisher effect or hypothesis states that a permanent change 
in the inflation rate will cause nominal interest rate to move 
in a one to one relation with inflation. Thus, the real interest 
rate will remain unchanged in response to a monetary 
shock if the Fisher effect holds. The real interest rate is 
determined entirely by the real factor in the economy, such 
as productivity of capital and investment time. This 
evidence of Fisher effect was found to be strong in some 
countries at certain period than others. For instance, United 
Kingdom, United States of America and Canada had strong 
evidence of Fisher effect in the post second world war 
period ([5]). 

To uncover this long run relationship between nominal 
interest rate and inflation, most literature applied unit root 
developed by [6] and the Johansen cointegration test by  [7]. 
The standard Johansen cointegration analysis assumes that 
all variables are integrated of order one I(1) and hence 
restricts the error correction term to be a stationary process 
I(0). This method was used by [8] to investigate the Fisher 
effect in Nigeria. The research discovered Partial Fisher 
effect in the long run between interest rate and inflation 
rate in Nigeria. Asemota and Bala [9] employed Kalman 
filter and cointegration approach to investigate Fisher effect 
in Nigeria using quarterly data. Their study did not find 
evidence of full Fisher effect. Noor and Shamim [10] used 
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Johansen cointegration test to determine the nature of 
relationship between nominal interest rate and inflation. 
Variance decomposition was used to explain the error 
correction model and Granger causality to determine the 
direction of relationship. The results found the presence of 
Fisher effect in Pakistan for the period 1980-2010.  
 

There is a more generalized model whose order of 
integration is continuum of real number known as 
fractional cointegration. The model does not only nest the 
unit-root behavior within it, but also display stationary and 
non-stationary, mean-reverting dynamics, long-memory 
and anti-persistent dependencies ([11]). The concept of long 
memory and fractional integrated models in time series was 
introduced by [12], [13] and [14]. Specifically, in Fisher 
effect, fractional integrated series may imply the existence 
of an equilibrium long term relationship between nominal 
interest rate and inflation. Consequently, the error 
correction term is fractionally cointegrated thus there exist 
fractional cointegration between nominal interest rate and 
inflation in line with Fisher hypothesis.    

This study is to find out whether there is any relationship 
between nominal interest rate and expected inflation in 
Nigeria in the regulated and deregulated periods. It is also 
to determine evidence of Fisher hypothesis in both periods.  
 
 
2  METHODOLOGY 
This study employs Dickey-Fuller Generalised Least Square 
(DF-GLS) and Kwiatkowski, Phillips Schmidt and Shin 
(KPSS) to test for unit root and stationarity. Geweke and 
Porter Hudak (GPH), Robinson Log-periodogram (Roblpr) 
and the modified log-periodogram regression test for 
fractional differencing parameter of the long memory 
process. 

The Fisher equation is of the form 

 𝐼𝑡 = 𝑟𝑡 + 𝜋𝑡𝑒           (1) 

where It is the nominal rate, rt is the ex-ante real interest 
rate and 𝜋𝑡𝑒 is the expected inflation rate. The Fisher 
equation can also be written in the form 

It = 𝛼 + 𝛽𝜋𝑡 + 𝜂𝑡      (2) 

where 𝛼 and 𝛽 are all parameter to be estimated. 𝜋𝑡   is the 
actual inflation rate, 𝜂𝑡 is a long memory process, such as 
ARFIMA. The expected inflation rate coincide with actually 
recorded inflation rate (𝜋𝑡 ) plus the random error (𝜀𝑡). 

Hence, the excepted inflation is estimated by the following 
equation. 

           𝜋𝑡𝑒 = 𝜋𝑡 + 𝜀𝑡     (3) 

where  𝜀𝑡  is the error component. Thus the composite error 
is equal to 𝛽𝜀𝑡 = 𝑍𝑡. In particular, an estimate of 𝛽 is not 
significantly different from one in the cointegration 
regression equation (2), which indicate the presence of a 
full Fisher effect. The term (𝐼𝑡 − 𝜋𝑡) is stationary if the 
estimate of 𝛽 is significantly lower than one. That is, there 
will be a partial Fisher effect. Therefore the changes in the 
expected inflation rate would be transmitted in a 
proportion to (𝛽 < 1) the nominal interest rate. 

By definition 𝒓𝒕 = 𝑰𝒕 − 𝝅𝒕 where 𝒓𝒕 is the real interest rate. 
In other word, 𝒓𝒕 is given by the assumption of rational 
expectation. The real interest rate would only differ by a 
random stationary term, so that stationarity of the former 
(real interest rate) implies stationarity of the later (𝑰𝒕 − 𝝅𝒕). 
However it could happen that in equation (2). The nominal 
interest rate and inflation rate would be cointegrated. If It 
and 𝝅𝒕, are characterized by units root or are I(1) then 
Fisher  hypothesis may be tested by examining whether 
these two variables form a stationary linear combination. 
 
2.1 Unit Root Test. 
All conventional unit root tests are based on ARIMA (p,d,q) 
model. In a traditional ARIMA model, d is restricted to be a 
non negative integer. When d=1, the process is non-
stationary, if d = 0, the process is stationary. ([15]) observed 
that a standard unit-root test such as Dickey-Fuller test may 
have low power against fractional alternative. For that 
reason this study employ DF-GLS test developed by [16] 
and KPSS by [17] to test for unit root and stationarity. These 
approaches are described below. 
 
2.2  Dickey-Fuller Generalized Least Squares Test 
The Dickey-Fuller generalized least squares unit root test 
by [16] is a simple modification of the Augmented-Dickey 
Fuller test. Exploiting the result in [18] that uniformly 
powerful test do not exist for unit root tests,  [16] modified 
the ADF test and showed that DF-GLS test has the limiting 
power function close to the point optimal test. In the 
conventional ADF test for non-stationarity, the alternative 
hypothesis is ρ<1 which shows that the test is not 
conducted against any value of ρ. Under these 
circumstances a power envelope was constructed covering 
the continuous set of each possible value of ρ under the 
alternative. Elliot et al. [16] then proposed a family of tests 
whose power functions is tangent to the power envelope at 
one point and never lying below it. These tests were 
denoted by PT(0.5), which shows that they are optimal at the 
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power of 50%. They went on to show that DF-GLS has the 
limiting power function close to PT(0.5). 
 
In the DF-GLS test, the data are detrended (depending on 
whether the model is with drift only or has a linear trend) 
so that deterministic variables are taken out of the data 
prior to running the regression. A generalized least squares 
regression equation of detrended data, 𝑦𝑡𝑑 using the 
estimate associated with 𝑎�  is given as 
     𝑦𝑡𝑑  =  𝑦𝑡  −  𝛼�0 − 𝛼�1t                 (4) 

where  𝑦𝑡   is the original series, 𝛼�0 and 𝛼�1 are the drift and 
trend parameters respectively obtained by regressing 𝑦�  on  
�̅�  

])(,,)(,[ ′−−= TyaLyaLyy 11 21    (5) 

])(,,)(,[ ′−−= TxaLxaLxx 11 21   (6) 

with  ),( ′= Tx 1 , 





 +=

T
c1α  ,  c  is 7 if the data 

generating process has a drift only and c  is 13.5 if the data 
generating process has a drift with trend.  

The DF-GLS test therefore involves estimating the equation 

∆𝑦𝑡𝑑  =  𝛽0𝑦𝑡−1𝑑 + 𝛽1∆𝑦𝑡−1𝑑 + … + 𝛽𝑝∆𝑦𝑡−𝑝𝑑 + 𝑣𝑡              (7) 

As with the ADF test, the null hypothesis is H0: 𝛽0 = 1. This 
is considered with the t-ratio for �̂�0 from equation (7). The 
DF-GLS  t-ratio follows a Dickey-Fuller distribution in the 
case of constant only. The asymptotic distribution differs 
when you include both constant and trend. ([16]) simulate 
the critical values of the test statistics in this later case. By 
setting 𝑇 = {50, 100, 200,∞},  the null hypothesis is rejected 
if the test statistic falls below the critical value. 
 
2.3 Kwiatkowski, Phillips Schmidt and Shin (KPSS) Test 
The integrated properties of a series 𝑦𝑡 may also be 
investigated by testing the null hypothesis 

𝐻0 = 𝑦𝑡 = 𝐼(0)          against the alternative hypothesis   
𝐻𝐴:𝑦𝑡 =  𝐼(1)                       (8) 

That is the hypothesis that the data generating process is 
stationary [I(0)] against a unit root [I(1)]. Kwiatkowski et al. 
[17] have derived a test for the pair of hypothesis in the 
absence of linear trend term. They start from a data 
generating process.  

𝑦𝑡 = 𝑥𝑡 + 𝑧𝑡       (9)      

where 𝑥𝑡 is a random walk 

𝑘𝑡 = 𝑘𝑡−1 + 𝑣𝑡 ,𝑣𝑡~𝑖𝑖𝑑(0,𝜎2𝑣)       (10) 

where 𝑧𝑡 is a stationary process. In this framework the 
foregoing pair of hypothesis is equivalent to the pair. 

𝐻𝑜:𝜎𝜐2 = 0   𝑎𝑔𝑎𝑖𝑛𝑠𝑡   𝐻𝑎: 𝜎𝜐2 ≠ 0      (11) 

where  𝐻𝑜  is the null hypothesis, and 𝐻𝑎 is the alternative 
hypothesis. Kwiatkowski et al. [17] propose the following 
test statistics 

 𝐾𝑃𝑆𝑆 = 1
𝑇2
∑ 𝑆𝑡2

𝜎�∞2
𝑇
𝑡=1     (12) 

where  𝑆𝑡 = ∑ 𝑤�𝑗𝑡
𝑗=1 ,  with 𝑤𝑗 = 𝑦𝑡 − 𝑦� and 𝜎�∞2 is an estimator 

given as  

 𝜎∞2 = lim𝑇→∞ 𝑇−1 𝑉𝑎𝑟 ( ∑ 𝑍𝑡𝑇
𝑡=1  )    (13) 

that is 𝜎∞2 is an estimator of the long run variance of the 
process zt , 𝑤𝑗 = 1 − 𝑣

𝑗𝑞+1
 is a Bartlett window with truncated 

lag 𝑗𝑔. KPSS uses Kernel estimators to correct serial for 
correction, and Bartlett kernel is one of the best estimators. 
The null hypothesis is rejected if the test statistics is greater 
that the asymptotic critical values. 

2.4 Fractional Cointegration Test. 
The existence of fractional cointegration implies that the 
econometric data may be randomly drifting away from 
equilibrium for long episodes, but may finally return to 
equilibrium. Fractional cointegration enables us to 
distinguish between the case where the equilibrium errors 
are non-mean reverting and where they are actually mean-
reverting but exhibiting a significant persistence in the 
short-run. If the equilibrium error is found to be integrated 
of order b with b>0 (which might not be necessarily I(0)), 
the series is fractionally cointegrated. 
 
2.5 ARFIMA Model  
Conventional unit-root tests are based on ARIMA (p,d,q) 
model and d the differencing parameter is restricted to be 
an integer. The ARFIMA model was however, introduced 
by [12] and [14]. The differencing parameter d is a real 
number. An ARFIMA ( ), ,p d q′  process is a stationary 

process that satisfies: 

( )( ) ( )1 ,d
p t q tL L y c Lφ θ ε− = +      t=1,2,…,T          (14)  

where d is the parameter of fractional differentiation, c is a 
constant and pφ  and qθ  are autoregressive and moving 

average polynomials of order p and q, respectively. The 
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autocorrelations, ,kρ  for an ARFIMA process for large k 

and 1
2d < are given by the following approximation (see 

([12])). 

 𝜌𝑘 ≈
Γ(1−𝑑)

Γ(𝑑)
𝑘2𝑑−1    (15) 

which is a monotonic function. The autocorrelation 
function of ARFIMA decreases slowly to zero while its 
spectral density is infinite (see [14]),  
 
2.6  Geweke and Porter-Hudak (GPH) Estimation of 
ARFIMA Processes  
The test developed by [19] is a spectral regression-based 
method for estimating fractional difference (d) in the 
equilibrium error. The test was carried out using Monte 
Carlo simulation experiment performed by [19]. The test 
also provides a general way of testing for fractional 
difference which is not dependant on nuisance parameters 
of the ARMA process. 

𝑓𝑥(𝜆) =  𝜎2 2𝜋{4𝑠𝑖𝑛2(𝜆 2⁄ }2⁄ 𝑓𝑢(𝜆)                       (16) 

Assume a sample of 𝑋𝑡 of size T is available. Take 
logarithms from both sides of equation (16), and evaluate it 
at harmonic frequencies 𝜆𝑗 = 2𝜋𝑗

𝑇
, j= 0,1,2,…T-1. After 

adding 𝐼(𝜆𝑗) the periodogram at ordinate j, to both sides of 
the log form of equation (16), becomes:  

𝐼𝑛{𝐼𝜆𝑖} =
𝐼𝑛{𝜎2 𝑓𝑢(0) 2𝜋⁄ }− 𝑑𝐼𝑛{4𝑠𝑖𝑛2(𝜆 2⁄ } +  𝐼𝑛�𝐼(𝜆𝑗) 𝑓𝑥(𝜆𝑗)⁄ �     (17)        

The last term on the right-hand side of equation (17) 
becomes negligible when low-frequency ordinates 𝜆𝑗 are 
near to 0. The following simple regression is hence 
suggested. 

 𝐼𝑛�𝐼�𝜆𝑗�� =  𝛽0 + 𝛽1𝐼𝑛�4𝑠𝑖𝑛2�𝜆𝑗 2⁄ ��+ 𝜂𝑗     (18) 

where  intercept 𝛽0 = 𝐼𝑛{𝜎2 𝑓𝑢(0) 2𝜋⁄ }, parameter 𝛽1 = −𝑑, 
error term  𝜂𝑗= 𝐼𝑛�𝐼(𝜆𝑗) 𝑓𝑥(𝜆𝑗)⁄ �  and  j = 1,2,…,n. The 
number of observations, that is, the number of ordinates to 
be used in the estimation of the regression is n = g(T), 
where g(T) satisfy the following conditions: 
lim ( )T g T→∞ = ∞  and lim ( ) / 0T g T T→∞ = . The 

function ( )g T T µ= , with 0 1,µ< < is the number of 
periodogram ordinates used to estimate d and satisfies both 
conditions and the estimator of d is consistent. The test of 
hypothesis for the parameter can be done based on the 
asymptotic distribution of ˆ,d derived by [19]. 

 �̂� → 𝑁(𝑑,𝜋2 6∑(𝑥𝑖 − �̅�2)⁄ )      (19)
 

where xi is the regressor ( ln�4𝑠𝑖𝑛2�𝜆𝑗 2⁄ ��). If 

[ ]lim ( )T g T→∞ and lim ( ) / 0T g T T→∞ =  then 
2 2lim / 6p s π= where s2 is the sample variance of the 

residuals from the regression equation (19). 

The value of the power factor, ,µ is the main determinant 
of ordinates included in the regression. Traditionally the 
number of periodogram ordinates is chosen from the 
interval [T0.45, T0.55]. However, ([20]) recently showed that 
the optimal m is of order O(T0.8). 

2.7 Robinson Log-Periodogram Regression Estimator 
An alternative log-peridogram regression estimation 
proposed by [21] provides asymptotic efficiency to Geweke 
and Porter-Hudak estimation. It also allows multivariate 
semi-parametric estimation of the long memory (fractional 
integration) parameters, d(g), of a set of time series, y(g), 
g=1,...,G, where G may be one if a series exhibits long 
memory. The series may neither be stationary nor have unit 
root but may be integrated process of order d, where d is a 
real number. When applied to a set of time series, the 
parameter d(g) for each series is estimated from a single 
log-periodogram regression which allows the intercept and 
slope to differ  for each series. A choice must be made of the 
number of harmonic ordinates to be included in the 
spectral regression. Robinson's estimator is not restricted to 
using a small fraction of the ordinates of the empirical 
periodogram of the series. It also allows the removal of one 
or more initial ordinates, and the averaging of the 
periodogram over adjacent frequencies. Given the 
assumption that  𝑋𝑡  represent a G-dimension vector with 
𝑔𝑡ℎ element 𝑋𝑔𝑡 ,𝑔 =  1 , …𝐺. If  𝑋𝑡 has a spectral density 
matrix 
 ∫ 𝑒𝑖𝑗𝜆 𝑓(𝜆) 𝑑𝜆𝜋
−𝜋 ,      (20) 

where  (𝑔,ℎ) is an element in 𝑓𝑔ℎ(𝜆).  The 𝑔𝑡ℎ diagonal 
element 𝑓𝑔𝑔(𝜆),  is the power of the spectral density of 𝑋𝑔𝑡 
for  0 < 𝐶𝑔 < ∞ 𝑎𝑛𝑑 − 1

2
< 𝑑𝑔 < 1

2
 . 

Hence  Robinson log-periodogram is given as 
𝐼𝐺(𝜆) = (2𝜋𝑛)−1�∑ 𝑋𝑔𝑡𝑒𝑖𝑡𝑋𝑛

𝑡=1 �
2,𝑔 = 1, … ,𝐺                        (21) 

 
2.8 Modified Log - Periodogram Regression Test (modlpr) 
This is a modified form of the test by [19] which estimates 
the long memory process parameter d. The modified log-
periodogram regression test was proposed by [22] and is 
designed to take care of the weakness in GPH estimation. 
The GPH estimation is inconsistent against  𝑑 > 1 of the 
alternative hypothesis. 

Let 𝑋𝑡 be fractionally integrated process, it implies 𝑋𝑡  
satisfies a general model in equation (21) in the case where 
the  𝑡 > 0  in the error term, 𝑓𝑢(𝜆) is the spectral density. 
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𝜇𝑡 is stationa6ry with zero mean. In the case where the 
𝑡 > 0 in the error term 

𝜇𝑡 = 𝐶(𝑙)𝜀𝑡 = ∑ 𝐶𝑗𝜀𝑡−𝑗 ,     ∑ 𝑗�𝐶𝑗� < ∞    𝐶(1) ≠ 0∞
𝑗=0

∞
𝑗=0     (22) 

with 𝜀𝑡 = 𝑖𝑖𝑑(0,𝜎2) with Ε|𝜀𝑡|𝑝 < ∞ and 𝑝 > 4. Equation 
(22) implies that spectrum of 𝜇𝑡 is continuously 
differentiable for all frequencies. 
The fractional process is     
  𝑋𝑡 = (1− 𝑑)−𝑑  𝜇𝑡 = ∑ (𝑑)𝑘

𝑘!
𝜇𝑡−𝑘𝑡

𝑘=0 ,          
 𝑤𝑖𝑡ℎ 𝜇𝑡 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≤ 0     (23) 

𝑤ℎ𝑒𝑟𝑒      (𝑑)𝑘 =
Γ(𝑑 + 𝑘)

Γ(𝑑)
 

This is Pochammer’s symbol for the forward factorial 
function. The modified estimator is expressed as 
𝑤𝑢(𝜆) = 𝑤𝑥(𝜆)𝐷𝑛�𝑒−𝑖𝜆;  𝑑�+ 1

√2𝜋𝑛
�𝑋�𝜆0(𝑑)− 𝑒𝑖𝑛𝜆𝑋�𝜆𝑛(𝑑)� (24) 

𝑤ℎ𝑒𝑟𝑒  𝑋�𝜆𝑛(𝑑) = 𝐷𝑛�𝑒−𝑖𝜆𝐿;  𝑑� = ��̃�𝜆𝑝𝑒−𝑖𝑝𝜆,𝐿𝑃 
𝑛−1

𝑝=0

  

  𝑋𝑛 = ��̃�𝜆𝑝𝑒−𝑖𝑝𝜆𝑋𝑛−𝑝,
𝑛−1

𝑝=0

 

 𝑤𝑥(𝜆) =   1
√2𝜋𝑛

∑ 𝑋𝑡𝑒𝑖+𝑡𝑛
𝑡=1     (25) 

The discrete Fourier transform of  𝑋𝑡 is 𝑊𝑥(𝜆) which is 
associated with periodogram co-ordinates 𝑤𝑢(𝜆). The 
Geweke and Porter-Hudak test establish consistency and 
asymptotic normality for 𝑑 < 0. Robinson [21] proved 
consistency and asymptotic normality for 0 < 𝑑 ≤ 1

2�   in 
the case of non-stationary ARMA while [23] showed that 
𝑑>1 is consistency with 𝑑 exihibiting asymptotic bias 
towards unity. The null hypothesis of consistency is tested 
against both 𝑑 < 1 𝑎𝑛𝑑 𝑑 > 1. 
 
2.9 Properties of Different Values of d. 

(i) For−0.5 < 𝑑 < 0, all the autocorrelations are 
negative and tend hyperbolically to zero in such 
case, the process is considered anti-persistent or 
with intermediate memory. 

(ii)  If 0 < 𝑑 < 0.5, then all the auto-correlation are 
positive and also decline hyperbolically. Therefore 
they are persistent and have a long memory 
process. 

(iii) If 0.5 < 𝑑 < 1, the process is covariance non-
stationary but mean reverting since an innovation 
will have no permanent effect on its value. This is 
in contrast to an I(1) which will be both covariance 
non-stationary and non-mean reverting in which 
case the effect of an innovation will persist forever. 

 
3  RESULTS AND DISCUSSIONS 

This section comprises of analysis of data for regulation 
period (1961M1 – 1986M9) and deregulation period 
(1986M10 – 2010M12). Consideration was given to period 
when interest rate was regulated by government and 
period when government remove some restrictions to 
interest and introduce the Structural Adjustment 
Programme from 1986 - 20101.The section contain plots, 
unit root tests, fractional difference estimations and model 
fittings. The variables employed in this study are nominal 
interest rate (nint) and inflation (inf). Fractional difference 
series of nominal rate (fint) and inflation (finf) and 
computed. 

Table 1: DF-GLS test for inf in Regulation Period. 

Level First difference 
Lag 

order 
t-stat p-value Lag 

order 
t-stat p-

value 

5 -4.5257 0.00005 5 -4.6950 0.0000 

4 -4.0210 0.00014 4 -4.6981 0.0000 

3 -3.0532 0.00253 3 -5.6437 0.0025  

2 -3.0532 0.00252 2 -15.5349 0.0000 

1 -3.0532 0.00251 1 -15.5249 0.0025 

0 -3.0532 0.00250 0 -15.5249 0.0025 

The critical values of the t-statistic are -3.4686, -2.9128 and -
2.6099 at 1%, 5%, and 10% level of significance respectively, 
for both level and first difference.  

The test was carried out including the trend and intercept. 
The results show that the inflation series is stationarity at 
both level and first difference at 5% level of significance. 

Table 2: DF-GLS Test for (nint) in Regulation Period. 

Level First difference 
Lag 

order 
t-stat p-value Lag 

order 
t-stat p-

value 

5 -2.1295 0.0341 5 -9.3311 0.0000 

4 -1.3796 0.0000 4 -18.7312 0.0000 

3 -1.3189 0.1883 3 -18.7312 0.0000  

2 -1.3189 0.1883 2 -18.7312 0.0000 

1 -1.3189 0.1883 1 -18.6927 0.0000 

                                                             
1 For the purpose of this study, we are limiting the period of 
government relaxation of rule on interest rates (deregulation 
period) to 2010  
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0 -1.4680 0.0000 0 -18.6927 0.0000 

The critical values of the t-statistic are -3.4683, -2.9134 and -
2.6110 at 1%, 5%, and 10% level of significance respectively, 
for both level and first difference. 

The test is carried out including both trend and intercept. 
The results show that the series is stationary only at first 
difference of the series at 5% level of significance. 

Table 3: DF-GLS Test for Inflation in Deregulation 
period. 

Level First difference 
Lag 

order 
t-stat p-value Lag 

order 
t-stat p-

value 

5 -3.1606 0.0017 5 -7.2758 0.0000 

4 -3.1606 0.0017 4 -7.2758 0.0000 

3 -3.1606 0.0017 3 -7.2758 0.0000  

2 -2.5292 0.0000 2 -7.2758 0.0000 

1 -2.1530 0.0321 1 -9.0975 0.0000 

0 -1.6249 0.1052 0 -13.3222 0.0000 

The critical values of the t-statistic are -3.4708, -2.9084 and -
2.6012 at 1%, 5%, and 10% level of significance respectively, 
for both level and first difference. 

The test was carried out including both trend and intercept. 
The results show that inflation is stationary in level at 5% 
from lags 3 to 5 and stationary for all lags in first difference 
at 5% level of significance. 

Table 4: DF-GLS test for Nominal Interest  Rate 
Deregulation Period. 

Level First difference 
Lag 

order 
t-stat p-value Lag 

order 
t-stat p-

value 
5 -2.4627 0.0000 5 -16.1295 0.0000 

4 -2.2152 0.0275 4 -16.1295 0.0000 

3 -2.2152 0.0000 3 -16.1295 0.0000  

2 -2.2152 0.0275 2 -16.1295 0.0000 

1 -2.4627 0.0143 1 -16.1295 0.0000 

0 -3.7575 0.0002 0 -26.5841 0.0000 

The critical values of the t-statistic are -3.4708, -2.9084 and -
2.6012 at 1%, 5%, and 10% level of significance respectively, 
for both level and first difference. 

In Table 4 the test was carried out including both trend and 
intercept. The results show that the interest rate series is 
stationary in level at 5% only at lag 0 and stationary for all 
lags in first difference at 5% level of significance. 

Table 5: KPSS Test for Inflation and Nominal Interest 
Rate in Regulation and   Deregulation periods. 

     Regulated period Deregulated period 

 Level 1st diff Level 1st diff 

Var t-stat Crit 
region 

t-stat Crit 
region 

t-stat Cril 
region 

t-stat Crit 
region 

Inf 0.053 0.216 0.021 0.216 0.148 0.216 0.036 0.216 

Int 
rate 

0.063 0.110 0.100 0.110 0.258 0.110 0.064 0.110 

At 5% level of significance, the DF-GLS test reject that the 
null hypothesis of unit root for nominal interest rate and 
inflation rate. The KPSS tests uniformly reject trend 
stationarity for all series tested at the 5% level of 
significance. The combination of these evidences imply that 
both nominal interest rate and inflation rate are not 
stationary I(1) processes at level in the deregulated period 
but stationary in the regulated period. 

These conventional unit root tests have frequently been 
employed to establish the non stationarity of time-series 
processes. Critiques of this strategy have been carried out 
by [24], [25] and [26]. Perron and Vogelsang [25] 
demonstrated in a simulation study that shifts in the 
intercept and/or slope of the trend function of a stationary 
time series biases these standard unit-root tests toward non 
rejection of the null hypothesis. This is the reason why an 
alternative measure of estimating order of integration has 
been employed in this study. 

3.1 Fractional Integration Tests 
Conventional unit-root tests, generally fail to consider the 
possibility that the order of integration of these series may 
be fractional I(d), rather than integer (0, 1, 2, ...). The mean-
reverting properties of nominal interest rate and inflation 
series may not be detectable by standard integer order of 
differencing (unit-root tests), due to some of the short 
comings earlier mentioned (low power against fractional 
alternatives).  

Fractional integration tests are employed to overcome this 
challenge. This study makes use of three nonparametric 
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tests for the order of fractional integration2. These are  
spectral based regression estimator [19], the log-
periodogram regression estimator of [21] and the estimator 
of [22]. The Phillips' estimator is a recently proposed 
extension of [19] which addresses some of the weaknesses 
of the test in [19].   
 
Table 6: Geweke and Porter-Hudak (GPH) Estimation of 
Deregulation Period 

 Level First difference 
Power Interest 

rate 
Inflation Interest 

rate 
Inflation 

0.50 0.3335 1.0551 -0.3290 0.0694 

0.55 0.6296 1.0486 -0.2915 0.0555 

0.60 0.8690 1.3170 -0.1416 0.3227 

0.65 0.9028 1.2447 -0.1361 0.2420 

0.70 0.8026 1.3816 -0.2186 0.4506 

0.75 0.8750 1.3506 -0.0913 0.3536 

0.80 0.7498 1.2902 -0.2171 0.2704 

From Table 6 GPH estimation reject the null hypothesis of 
stationarity in level of both series, but does not reject 
stationarity at first difference of both series, hence both 
series are fractional integrated at first difference. 

Table 7:  Geweke and Porter-Hudak (GPH) Estimation of 
Regulation Period. 

 Level First difference 
Power Interest 

rate 
Inflation Interest 

rate 
Inflation 

0.50 0.6935 0.4416 -0.2416 -0.0433 

0.55 1.1928 0.3906 0.1882 0.0876 

0.60 1.2471 0.3386 0.2870 0.0240 

0.65 1.1757 0.3840 0.2131 0.0343 

0.70 1.1467 0.4639 0.1975 0.0146 

0.75 1.0089 0.7047 0.0344 0.0308 

0.80 0.9622 0.8974 0.0237 0.0035 

The result of Table 7 show fractional integration of inflation 
at level hence inflation in regulation period is persistent 
and has a long memory process while interest rate of the 
same period is non-stationary but mean reverting. 

                                                             
2 another methods of fractional integration estimation is the 
Lo modified rescaled range(R/S) test. 

Table 8: Robinson Log- Periodogram Regression (Roblpr) 
Estimation of Deregulation Period. 

 Level First difference 
Power Interest 

rate 
Inflation Interest 

rate 
Inflation 

0.70 0.7644 1.4284 -0.1999 0.4011 

0.75 0.8380 1.3616 -0.1189 0.3292 

0.80 0.7099 1.2256 -0.2189 0.2951 

0.85 0.6280 1.1889 -0.2494 0.3132 

0.90 0.5169 1.0252 -0.3236 0.2369 

Result in Table 8 shows fractional integration  of interest 
rate at level, while inflation at level is non-stationary but is 
fractionally integrated at first difference.  

Table 9: Robinson Log-Periodogram Regression (Roblpr) 
Estimation of Regulation    Period. 

 Level First difference 
Power Interest 

rate 
Inflation Interest 

rate 
Infla  

0.70 0.4769 1.1065 0.0314 0.17  

0.75 0.7200 0.9784 0.0301 0.02  

0.80 0.8730 0.9156 0.0010 0.01  

0.85 0.7393 0.9386 -0.0054 0.05  

0.90 0.8065 0.8299 -0.0295 0.02  

The two variables in Table 9 are fractionally integrated. 

Table 10: Modified Log-Periodogram Regression 
(Moblpr) Estimation of Regulation Period. 

 Level First difference 
Power Interest 

rate 
Inflation Interest 

rate 
Inflation 

0.50 -0.1942 0.6042 -0.0555 0.0186 

0.55 -0.0914 0.8955 -0.0705 0.3241 

0.60 -0.1023 1.1236 0.1061 0.4270 

0.65 0.0666 1.0473 0.0363 0.2680 

0.70 0.2443 1.0727 0.0873 0.2272 

0.75 0.5031 0.9115 0.0574 0.0610 

0.80 0.7536 0.8893 0.0166 0.0093 

Table 11: Modified Log-Periodogram Regression 
(Moblpr) Estimation of Deregulation Period. 

 Level First difference 
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Power Interest 
rate 

Inflation Interest 
rate 

Inflation 

0.50 0.5326 0.9150 -0.3798 0.0696 

0.55 0.6277 0.9626 -0.3355 0.0566 

0.60 0.8632 1.0772 0.1777 0.3285 

0.65 0.8971 1.1154 -0.1665 0.2407 

0.70 0.7994 1.1921 -0.2422 0.4367 

0.75 0.8713 1.2284 -0.1100 0.3413 

0.80 0.7492 1.1958 -0.2330 0.2590 

Table 10 and Table 11 results agree with that of Geweke 
and Poter-Hudak and the log periodogram regression 
estimation. 
 
3.2 Fractional Cointegration Test 
The long memory parameter d estimated in Table 6 and 8 
are used to generate fractionally difference series for 
inflation and interest rate for the deregulation period. The 
new set of data is now used to perform cointegration. The 
cointegration test is carried out using Johansen test for 
cointegration see Table 10. 

 

 

 

Table 12: Cointegration test (GPH) of Deregulation Period 

Number of equation = 2,   Lag interval = 1 to 4. 

The result in Table 10 does not show a long run relationship 
between the two variables at 95% confidence interval. 

Table 13: Ordinary Least Squares (OLS) Test for  
regulation Period. 

Var Coeff Error t-stat p-value 

Const 9.2135 0.1246 73.94 0.00001 

Inf 0.3819 0.0074 5.186 0.0516 

Least square regression is given as 

 𝐼𝑡 = 9.21350 + 0.381939 × 𝑖𝑡   (26) 

Results from Table 11 show a partial Fisher effect between 
nominal interest rate and inflation in regulated period. The 
least square regression is given as 
 

Table 14: Ordinary Least squares (OLS) Test for 
Deregulated Period. 

Variable Coefficient Standard error   
Constant 21.4202 0.436624   

Inflation 0.0274743 0.140552   

 
The least square regression is given as 
 𝐼𝑡 = 21.4202 + 0.0275 ×it   
 (27) 
Equation (27) implies partial relationship between interest 
rate hand inflation in deregulation period. 
 
4  CONCLUSION   
In this study, we provide further empirical evidence on the 
validity of the Fisher hypothesis, which proposes a positive 
relationship between nominal interest rates and inflation by 
applying the fractional cointegration techniques to a data of 
regulation and deregulation periods. The results show that, 
nominal interest rate and inflation are fractionally 
cointegrated in the deregulation period using the Geweke 
and Poter-Hudak, the Robinson log-periodogram test and 
the modified log-periodogram regression estimation. The 
residuals of regulation period are not are fractionally 
integrated.  

Therefore, the results show that there is a stable long run 
relationship between nominal interest rate and inflation 
suggesting the validity of Fisher hypothesis in deregulation 
era. The results also imply that equilibrium errors display 
long memory or deviation from the long run relationship 

shared by nominal interest rates and inflation takes a long 
time to dissipate and return to their equilibrium 
relationship, but the same can't be said for the regulation 
period.  

This study is in agreement with the findings of [11] who 
examined the Fisher hypothesis using fractional 
integration. This thus confirm the validity of Fisher’s 
hypothesis in the current dispensation of deregulation in 
Nigeria and found clear evidence that the research 
methodology used in several recent contribution to the 
Fisher equation literature using standard cointegration 
techniques is inappropriate. In conclusion, our results 
justify the increasing use of fractional cointegration analysis 
to validate the findings of Fisher hypothesis. 

Eigen-value Trace-
stat 

5% Critical 
value 

P-value 

0.053025 23.31639 15.49471 0.0027 

0.027521 7.897682 3.841460 0.0050 
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